Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.761
Filtrar
1.
Neuropharmacology ; 238: 109653, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37422182

RESUMO

Prolonged severe hypoxia follows brief seizures and represents a mechanism underlying several negative postictal manifestations without interventions. Approximately 50% of the postictal hypoxia phenomenon can be accounted for by arteriole vasoconstriction. What accounts for the rest of the drop in unbound oxygen is unclear. Here, we determined the effect of pharmacological modulation of mitochondrial function on tissue oxygenation in the hippocampus of rats after repeatedly evoked seizures. Rats were treated with mitochondrial uncoupler 2,4 dinitrophenol (DNP) or antioxidants. Oxygen profiles were recorded using a chronically implanted oxygen-sensing probe, before, during, and after seizure induction. Mitochondrial function and redox tone were measured using in vitro mitochondrial assays and immunohistochemistry. Postictal cognitive impairment was assessed using the novel object recognition task. Mild mitochondrial uncoupling by DNP raised hippocampal oxygen tension and ameliorated postictal hypoxia. Chronic DNP also lowered mitochondrial oxygen-derived reactive species and oxidative stress in the hippocampus during postictal hypoxia. Uncoupling the mitochondria exerts therapeutic benefits on postictal cognitive dysfunction. Finally, antioxidants do not affect postictal hypoxia, but protect the brain from associated cognitive deficits. We provided evidence for a metabolic component of the prolonged oxygen deprivation that follow seizures and its pathological sequelae. Furthermore, we identified a molecular underpinning of this metabolic component, which involves excessive oxygen conversion into reactive species. Mild mitochondrial uncoupling may be a potential therapeutic strategy to treat the postictal state where seizure control is absent or poor.


Assuntos
Antioxidantes , Hipóxia , Ratos , Animais , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Hipóxia/metabolismo , Oxigênio/metabolismo , Mitocôndrias , Convulsões/metabolismo , Desacopladores/metabolismo , Desacopladores/farmacologia
2.
Biochemistry (Mosc) ; 87(8): 812-822, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36171648

RESUMO

Pyrrolomycins C (Pyr_C) and D (Pyr_D) are antibiotics produced by Actinosporangium and Streptomyces. The mechanism of their antimicrobial activity consists in depolarization of bacterial membrane, leading to the suppression of bacterial bioenergetics through the uncoupling of oxidative phosphorylation, which is based on the protonophore action of these antibiotics [Valderrama et al., Antimicrob. Agents Chemother. (2019) 63, e01450]. Here, we studied the effect of pyrrolomycins on the isolated rat liver mitochondria. Pyr_C was found to be more active than Pyr_D and uncoupled mitochondria in the submicromolar concentration range, which was observed as the mitochondrial membrane depolarization and stimulation of mitochondrial respiration. In the case of mitoplasts (isolated mitochondria with impaired outer membrane integrity), the difference in the action of Pyr_C and Pyr_D was significantly less pronounced. By contrast, in inverted submitochondrial particles (SMPs), Pyr_D was more active as an uncoupler, which caused collapse of the membrane potential even at the nanomolar concentrations. The same ratio of the protonophoric activity of Pyr_D and Pyr_C was obtained by us on liposomes loaded with the pH indicator pyranine. The protonophore activity of Pyr_D in the planar bilayer lipid membranes (BLMs) was maximal at ~pH 9, i.e., at pH values close to pKa of this compound. Pyr_D functions as a typical anionic protonophore; its activity in the BLM could be reduced by the addition of the dipole modifier phloretin. The difference between the protonophore activity of Pyr_C and Pyr_D in the mitochondria and BLMs can be attributed to a higher ability of Pyr_C to penetrate the outer mitochondrial membrane.


Assuntos
Antibacterianos , Lipossomos , Animais , Antibacterianos/química , Bicamadas Lipídicas/química , Mitocôndrias , Mitocôndrias Hepáticas/metabolismo , Floretina/metabolismo , Floretina/farmacologia , Ratos , Desacopladores/farmacologia
3.
Arch Biochem Biophys ; 728: 109366, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35878680

RESUMO

An impressive body of evidence has been accumulated now on sound beneficial effects of mitochondrial uncouplers in struggling with the most dangerous pathologies such as cancer, infective diseases, neurodegeneration and obesity. To increase their efficacy while gaining further insight in the mechanism of the uncoupling action has been remaining a challenge. Encouraged by our previous promising results on lipophilic derivatives of 7-hydroxycoumarin-4-acetic acid (UB-4 esters), here, we use a 7-hydroxycoumarin-3-carboxylic acid scaffold to synthesize a new series of 7-hydroxycoumarin (umbelliferone, UB)-derived uncouplers of oxidative phosphorylation - alkyl esters of umbelliferone-3-carboxylic acid (UB-3 esters) with varying carbon chain length. Compared to the UB-4 derivatives, UB-3 esters proved to be stronger uncouplers: the most effective of them caused a pronounced increase in the respiration rate of isolated rat heart mitochondria (RHM) at submicromolar concentrations. Both of these series of UB derivatives exhibited a striking difference between their uncoupling patterns in mitochondria isolated from liver and heart or kidney, namely: a pronounced but transient decrease in membrane potential, followed by its recovery, was observed after the addition of these compounds to isolated rat liver mitochondria (RLM), while the depolarization of RHM and rat kidney mitochondria (RKM) was rather stable under the same conditions. Interestingly, partial reversal of this depolarization in RHM and RKM was caused by carboxyatractyloside, an inhibitor of ATP/ADP translocase, thereby pointing to the involvement of this mitochondrial membrane protein in the uncoupling activity of both UB-3 and UB-4 esters. The fast membrane potential recovery in RLM uncoupled by the addition of the UB esters was apparently associated with hydrolysis of these compounds, catalyzed by mitochondrial aldehyde dehydrogenase (ALDH2), being in high abundance in liver compared to other tissues. Protonophoric properties of the UB derivatives in isolated mitochondria were confirmed by measurements of RHM swelling in the presence of potassium acetate. In model bilayer lipid membranes (liposomes), proton-carrying activity of UB-3 esters was demonstrated by measuring fluorescence response of the pH-dependent dye pyranine. Electrophysiological experiments on identified neurons from Lymnaea stagnalis demonstrated low neurotoxicity of UB-3 esters. Resazurin-based cell viability assay showed low toxicity of UB-3 esters to HEK293 cells and primary human fibroblasts. Thus, the present results enable us to consider UB-3 esters as effective tissue-specific protonophoric mitochondrial uncouplers.


Assuntos
Translocases Mitocondriais de ADP e ATP , Fosforilação Oxidativa , Trifosfato de Adenosina , Aldeído-Desidrogenase Mitocondrial , Animais , Ésteres , Células HEK293 , Humanos , Mitocôndrias Cardíacas , Mitocôndrias Hepáticas , Ratos , Umbeliferonas , Desacopladores
4.
Toxicol In Vitro ; 80: 105325, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35121064

RESUMO

Mitochondria are at the core of cellular energy metabolism and are also involved in the oxidative stress response and programmed cell death pathways. Mitochondrial dysfunction is found to be associated with many disease conditions like metabolic syndrome, neurodegenerative disorders, coronary artery diseases, cancer, etc. This has generated considerable interest in the scientific community over the assessment of mitochondrial function and mitochondrial damage. One of the most common methodologies in these studies is by analysing the mitochondrial activity in the presence of mitochondrial substrates, inhibitors and uncouplers. Apart from the specific effects of these molecules on mitochondria, their interactions with the components of the experimental system could interfere with the results derived. Therefore, the role some specific experimental conditions would have on the outcome should be carefully elucidated. Fetal Bovine Serum or Bovine Serum Albumin (BSA); routinely used in in vitro experiments for their growth promoting and surfactant properties; can have profound impact on the pharmacokinetics of chemical compounds as albumin residue can bind to and affect their bioavailability. In the present study, we demonstrate that Carbonyl cyanide 3-chlorophenylhydrazone (CCCP) induced mitochondrial depolarization is hindered in the presence of albumin due to the molecular interaction between CCCP and albumin.


Assuntos
Carbonil Cianeto m-Clorofenil Hidrazona/toxicidade , Mitocôndrias/efeitos dos fármacos , Desacopladores/toxicidade , Animais , Linhagem Celular , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ratos , Soroalbumina Bovina/metabolismo
5.
Bioelectrochemistry ; 145: 108081, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35131667

RESUMO

A great variety of coumarin-related compounds, both natural and synthetic, being often brightly fluorescent, have shown themselves beneficial in medicine for both therapeutic and imaging purposes. Here, in search for effective uncouplers of oxidative phosphorylation, we synthesized a series of 7-hydroxycoumarin (umbelliferone, UB) derivatives combining rather high membrane affinity with the presence of a hydroxyl group deprotonable at physiological pH - alkyl esters of umbelliferone-4-acetic acid (UB-4 esters) differing in alkyl chain length. Addition of UB-4 esters to isolated rat liver mitochondria (RLM) resulted in their rapid depolarization, unexpectedly followed by membrane potential recovery on a minute time scale. According to TLC and HPLC data, incubation of RLM with UB-4 esters caused their hydrolysis, which led to disappearance of the uncoupling activity (recoupling). Both mitochondrial recoupling and hydrolysis of UB-4 esters were suppressed by inhibitors of mitochondrial aldehyde dehydrogenase (ALDH2), disulfiram and daidzin, thus pointing to the involvement of this enzyme in the recoupling of RLM incubated with UB-4 esters. The protonophoric mechanism of mitochondrial uncoupling by UB-4 esters was proved in experiments with artificial bilayer lipid membranes (BLM): these compounds induced proton-selective electrical current across planar BLM and caused dissipation of pH gradient on liposomes. UB-4 esters showed antibacterial activity against Bacillus subtilis, Staphylococcus aureus and Mycobacterium smegmatis.


Assuntos
Ésteres , Mitocôndrias Hepáticas , Ácido Acético/farmacologia , Aldeído-Desidrogenase Mitocondrial , Animais , Ésteres/farmacologia , Bicamadas Lipídicas/química , Ratos , Umbeliferonas/farmacologia , Desacopladores/farmacologia
6.
Molecules ; 27(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35209128

RESUMO

The finding that the most common mitochondrial DNA mutation m.11778G>A/MT-ND4 (p.R340H) associated with Leber's hereditary optic neuropathy (LHON) induces rotenone resistance has produced a long-standing debate, because it contrasts structural evidence showing that the ND4 subunit is far away from the quinone-reaction site in complex I, where rotenone acts. However, recent cryo-electron microscopy data revealed that rotenone also binds to the ND4 subunit. We investigated the possible structural modifications induced by the LHON mutation and found that its amino acid replacement would disrupt a possible hydrogen bond between native R340 and Q139 in ND4, thereby destabilizing rotenone binding. Our analysis thus explains rotenone resistance in LHON patients as a biochemical signature of its pathogenic effect on complex I.


Assuntos
Alelos , Substituição de Aminoácidos , Resistência a Medicamentos/genética , Complexo I de Transporte de Elétrons/genética , Mutação , Atrofia Óptica Hereditária de Leber/genética , Rotenona/farmacologia , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Modelos Moleculares , Atrofia Óptica Hereditária de Leber/metabolismo , Ligação Proteica , Conformação Proteica , Rotenona/química , Relação Estrutura-Atividade , Desacopladores/farmacologia
7.
Toxicol Appl Pharmacol ; 435: 115853, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973289

RESUMO

Parkinson's disease (PD) is the second most common progressive neurodegenerative disorder. Although mounting studies have been conducted, no effective therapy is available to halt its progression. Indole-3-carbinol (I3C) is a naturally occurring compound obtained by ß-thioglucosidase-mediated autolysis of glucobrassicin in cruciferous vegetables. Besides its powerful antioxidant activity, I3C has shown neuroprotection against depression and chemically induced neurotoxicity via its anti-inflammatory and antiapoptotic effects. This study aimed to investigate the neuroprotective effects of I3C against rotenone (ROT)-induced PD in male albino rats. The possible protective mechanisms were also explored. PD was induced by subcutaneous administration of ROT (2 mg/kg) for 28 days. The effects of I3C (25, 50, and 100 mg/kg/day) were assessed by catalepsy test (bar test), spontaneous locomotor activity, rotarod test, weight change, tyrosine hydroxylase (TH) expression, α-synuclein (α-Syn) expression, striatal dopamine (DA) content, and histological examination. The highest dose of I3C (100 mg/kg) was the most effective to prevent ROT-mediated motor dysfunctions and amend striatal DA decrease, weight loss, neurodegeneration, TH expression reduction, and α-Syn expression increase in both the midbrain and striatum. Further mechanistic investigations revealed that the neuroprotective effects of I3C are partially attributed to its anti-inflammatory and antiapoptotic effects and the activation of the sirtuin 1/AMP-activated protein kinase pathway. Altogether, these results suggested that I3C could attenuate biochemical, molecular, and functional changes in a rat PD model with following repeated rotenone exposures.


Assuntos
Indóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/prevenção & controle , Rotenona , Sirtuína 1/metabolismo , Desacopladores , Animais , Peso Corporal/efeitos dos fármacos , Catalepsia/induzido quimicamente , Catalepsia/prevenção & controle , Dopamina/metabolismo , Masculino , Atividade Motora/efeitos dos fármacos , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Doença de Parkinson Secundária/psicologia , Equilíbrio Postural/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Sirtuína 1/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/biossíntese , alfa-Sinucleína/efeitos dos fármacos
8.
Toxicol Sci ; 185(2): 208-219, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-34865177

RESUMO

Protonophoric uncoupling of phosphorylation is an important factor when assessing chemicals for their toxicity, and has recently moved into focus in pharmaceutical research with respect to the treatment of diseases such as cancer, diabetes, or obesity. Reliably identifying uncoupling activity is thus a valuable goal. To that end, we screened more than 6000 anionic compounds for in vitro uncoupling activity, using a biophysical model based on ab initio COSMO-RS input parameters with the molecular structure as the only external input. We combined these results with a model for baseline toxicity (narcosis). Our model identified more than 1250 possible uncouplers in the screening dataset, and identified possible new uncoupler classes such as thiophosphoric acids. When tested against 423 known uncouplers and 612 known inactive compounds in the dataset, the model reached a sensitivity of 83% and a specificity of 96%. In a direct comparison, it showed a similar specificity than the structural alert profiler Mitotox (97%), but much higher sensitivity than Mitotox (47%). The biophysical model thus allows for a more accurate screening for uncoupling activity than existing structural alert profilers. We propose to use our model as a complementary tool to screen large datasets for protonophoric uncoupling activity in drug development and toxicity assessment.


Assuntos
Fosforilação Oxidativa , Estrutura Molecular , Desacopladores
9.
Mol Cell ; 82(2): 435-446.e7, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34847359

RESUMO

Most mitochondrial proteins are translated in the cytosol and imported into mitochondria. Mutations in the mitochondrial protein import machinery cause human pathologies. However, a lack of suitable tools to measure protein uptake across the mitochondrial proteome has prevented the identification of specific proteins affected by import perturbation. Here, we introduce mePRODmt, a pulsed-SILAC based proteomics approach that includes a booster signal to increase the sensitivity for mitochondrial proteins selectively, enabling global dynamic analysis of endogenous mitochondrial protein uptake in cells. We applied mePRODmt to determine protein uptake kinetics and examined how inhibitors of mitochondrial import machineries affect protein uptake. Monitoring changes in translation and uptake upon mitochondrial membrane depolarization revealed that protein uptake was extensively modulated by the import and translation machineries via activation of the integrated stress response. Strikingly, uptake changes were not uniform, with subsets of proteins being unaffected or decreased due to changes in translation or import capacity.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Biossíntese de Proteínas , Proteoma , Proteômica , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Células HeLa , Humanos , Cinética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Transporte Proteico , Desacopladores/farmacologia
10.
Comput Math Methods Med ; 2021: 6009602, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899967

RESUMO

How to choose the right plan is the key to treatment, and this must take into account the local eradication of Helicobacter pylori and the drug resistance of Helicobacter pylori. In order to better eradicate Helicobacter pylori, in the current clinical treatment process, most of the combined treatments of triple drugs are used, but the therapeutic effect is still not ideal. In addition, many studies have focused on changing the types and dosages of drugs, but they have not yet achieved good results. This paper combines experimental research to analyze the drug resistance rate of Helicobacter pylori and obtains gastric mucosal specimens of patients through gastroscopy to cultivate clinical isolates of H. pylori.. Furthermore, this study used the Kirby-Bauer drug susceptibility disc technique to determine the sensitivity of H. pylori clinical isolates to a range of regularly used clinical antibiotics, as well as a set of instances of H. pylori antibiotic resistance. Finally, this research integrates experimental analyses and various successful eradication treatment plans to provide a unique eradication treatment strategy.


Assuntos
Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Helicobacter pylori/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Biologia Computacional , Resistência Microbiana a Medicamentos/genética , Quimioterapia Combinada , Mucosa Gástrica/microbiologia , Genes Bacterianos , Helicobacter pylori/genética , Helicobacter pylori/isolamento & purificação , Humanos , Testes de Sensibilidade Microbiana , Desacopladores/farmacologia
11.
FASEB J ; 35(12): e22024, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34751984

RESUMO

Alterations in mitochondrial dynamics, including their intracellular trafficking, are common early manifestations of neuronal degeneration. However, current methodologies used to study mitochondrial trafficking events rely on parameters that are primarily altered in later stages of neurodegeneration. Our objective was to establish a reliable applied statistical analysis to detect early alterations in neuronal mitochondrial trafficking. We propose a novel quantitative analysis of mitochondria trajectories based on innovative movement descriptors, including straightness, efficiency, anisotropy, and kurtosis. We evaluated time- and dose-dependent alterations in trajectory descriptors using biological data from differentiated SH-SY5Y cells treated with the mitochondrial toxicants 6-hydroxydopamine and rotenone. MitoTracker Red CMXRos-labelled mitochondria movement was analyzed by total internal reflection fluorescence microscopy followed by computational modelling to describe the process. Based on the aforementioned trajectory descriptors, this innovative analysis of mitochondria trajectories provides insights into mitochondrial movement characteristics and can be a consistent and sensitive method to detect alterations in mitochondrial trafficking occurring in the earliest time points of neurodegeneration.


Assuntos
Mitocôndrias/patologia , Dinâmica Mitocondrial , Neuroblastoma/patologia , Neurônios/patologia , Oxidopamina/efeitos adversos , Rotenona/efeitos adversos , Adrenérgicos/efeitos adversos , Diferenciação Celular , Humanos , Mitocôndrias/efeitos dos fármacos , Neuroblastoma/induzido quimicamente , Neurônios/efeitos dos fármacos , Desacopladores/efeitos adversos
12.
Neural Plast ; 2021: 9938566, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367273

RESUMO

Background: Parkinson's disease (PD) is a common neurological degenerative disease that cannot be completely cured, although drugs can improve or alleviate its symptoms. Optogenetic technology, which stimulates or inhibits neurons with excellent spatial and temporal resolution, provides a new idea and approach for the precise treatment of Parkinson's disease. However, the neural mechanism of photogenetic regulation remains unclear. Objective: In this paper, we want to study the nonlinear features of EEG signals in the striatum and globus pallidus through optogenetic stimulation of the substantia nigra compact part. Methods: Rotenone was injected stereotactically into the substantia nigra compact area and ventral tegmental area of SD rats to construct rotenone-treated rats. Then, for the optogenetic manipulation, we injected adeno-associated virus expressing channelrhodopsin to stimulate the globus pallidus and the striatum with a 1 mW blue light and collected LFP signals before, during, and after light stimulation. Finally, the collected LFP signals were analyzed by using nonlinear dynamic algorithms. Results: After observing the behavior and brain morphology, 16 models were finally determined to be successful. LFP results showed that approximate entropy and fractal dimension of rats in the control group were significantly greater than those in the experimental group after light treatment (p < 0.05). The LFP nonlinear features in the globus pallidus and striatum of rotenone-treated rats showed significant statistical differences before and after light stimulation (p < 0.05). Conclusion: Optogenetic technology can regulate the characteristic value of LFP signals in rotenone-treated rats to a certain extent. Approximate entropy and fractal dimension algorithm can be used as an effective index to study LFP changes in rotenone-treated rats.


Assuntos
Gânglios da Base/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Optogenética/métodos , Rotenona/farmacologia , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Desacopladores/farmacologia
13.
Anticancer Res ; 41(8): 4083-4088, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34281878

RESUMO

BACKGROUND/AIM: Efficient drug encapsulation and regulation of drug release are important factors for sustained drug release and application for release-controlled anti-cancer and anti-inflammatory drug delivery. In the present study, a direct evaluation system for drug-release from model carrier (e.g., alginate-gel beads) was examined using the mitochondrial oxygen consumption rate as an index. MATERIALS AND METHODS: Alginate-gel beads were coated with the uncoupler SF6847 (SF beads) and used as a model microparticle-type drug. The real-time monitoring of SF6847 release from prepared alginate-gel beads was performed using the mitochondrial oxygen consumption rate. Release profiles of nonsteroidal anti-inflammatory drugs [NSAIDs, mefenamic acid (MEF) and diclofenac (DIC)] from alginate-gel beads as well as SF beads were investigated using the real time monitoring system. RESULTS: SF6847 release from alginate-gel beads was clearly detected using the rat liver mitochondrial oxygen consumption rate. The release features of MEF and DIC from alginate-gel beads were defined by the present trial monitoring system, and these NSAIDs exhibited different release profiles. CONCLUSION: The present drug monitoring system detected released drugs, and the release profile reflected the molecular properties of the test drugs. This system may be applied to the design and development of precise sustained drug release systems (e.g., anti-cancer and anti-inflammatory drugs).


Assuntos
Liberação Controlada de Fármacos , Mitocôndrias Hepáticas/metabolismo , Oxigênio/metabolismo , Alginatos/química , Animais , Anti-Inflamatórios não Esteroides/química , Respiração Celular , Diclofenaco/química , Portadores de Fármacos/química , Ácido Mefenâmico/química , Nitrilas/química , Ratos , Desacopladores/química
14.
Neurochem Int ; 148: 105120, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34197898

RESUMO

Oxidative stress and mitochondrial dysfunction are now widely accepted as the major factors involved in the pathogenesis of Parkinson's disease (PD). Rotenone, a commonly used environmental toxin also reproduces these principle pathological features of PD. Hence, it is used frequently to induce experimental PD in cells and animals. In this study, we evaluated the neuroprotective effects of metformin against rotenone-induced toxicity in SH-SY5Y cells. Metformin treatment clearly rescued these cells from rotenone-mediated cell death via the reduction of the cytosolic and mitochondrial levels of reactive oxygen species and restoration of mitochondrial function. Furthermore, metformin upregulated PGC-1α, the master regulator of mitochondrial biogenesis and key antioxidant molecules, including glutathione and superoxide dismutase. We demonstrated that the drug exerted its cytoprotective effects by activating nuclear factor erythroid 2-related factor 2 (Nrf2)/heme-oxygenase (HO)-1 pathway, which in turn, is dependent on AKT activation by metformin. Thus, our results implicate that metformin provides neuroprotection against rotenone by inhibiting oxidative stress in the cells by inducing antioxidant system via upregulation of transcription mediated by Nrf2, thereby restoring the rotenone-induced mitochondrial dysfunction and energy deficit in the cells.


Assuntos
Hipoglicemiantes/farmacologia , Metformina/farmacologia , Doenças Mitocondriais/prevenção & controle , Fator 2 Relacionado a NF-E2/genética , Proteína Oncogênica v-akt/genética , Estresse Oxidativo/efeitos dos fármacos , Rotenona/antagonistas & inibidores , Rotenona/toxicidade , Transdução de Sinais/efeitos dos fármacos , Desacopladores/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Espécies Reativas de Oxigênio/metabolismo
15.
Nutrients ; 13(4)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805023

RESUMO

The high polyphenols content of cranberry accounts for its strong antioxidant activity underlying the beneficial health effects of this fruit. Rotenone (ROT) is a specific inhibitor of mitochondrial complex I in the brain which leads to the generation of oxidative stress. To date, there are few data indicating that toxicity of ROT is not limited to the brain but can also affect other tissues. We aimed to examine whether ROT-induced oxidative stress could be counteracted by cranberry juice not only in the brain but also in the liver and kidney. Wistar rats were given the combined treatment with ROT and cranberry juice (CJ) for 35 days. Parameters of antioxidant status were determined in the organs. ROT enhanced lipid peroxidation solely in the brain. The increase in the DNA damage was noticed in all organs examined and in leukocytes. The beneficial effect of CJ on these parameters appeared only in the brain. Additionally, CJ decreased the activity of serum hepatic enzymes. The effect of CJ on antioxidant enzymes was not consistent, however, in some organs, CJ reversed changes evoked by ROT. Summing up, ROT can cause oxidative damage not only in the brain but also in other organs. CJ demonstrated a protective effect against ROT-induced toxicity.


Assuntos
Encefalopatias/prevenção & controle , Sucos de Frutas e Vegetais , Nefropatias/prevenção & controle , Hepatopatias/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Rotenona/administração & dosagem , Vaccinium macrocarpon/metabolismo , Animais , Antioxidantes/farmacologia , Encefalopatias/induzido quimicamente , Dano ao DNA/efeitos dos fármacos , Modelos Animais de Doenças , Nefropatias/induzido quimicamente , Hepatopatias/etiologia , Masculino , Ratos , Ratos Wistar , Desacopladores/administração & dosagem
16.
Blood ; 138(15): 1317-1330, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33876224

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy. Despite recent advances in treatments with intensified chemotherapy regimens, relapse rates and associated morbidities remain high. In this context, metabolic dependencies have emerged as a druggable opportunity for the treatment of leukemia. Here, we tested the antileukemic effects of MB1-47, a newly developed mitochondrial uncoupling compound. MB1-47 treatment in T-ALL cells robustly inhibited cell proliferation via both cytostatic and cytotoxic effects as a result of compromised mitochondrial energy and metabolite depletion, which severely impaired nucleotide biosynthesis. Mechanistically, acute treatment with MB1-47 in primary leukemias promoted adenosine monophosphate-activated serine/threonine protein kinase (AMPK) activation and downregulation of mammalian target of rapamycin (mTOR) signaling, stalling anabolic pathways that support leukemic cell survival. Indeed, MB1-47 treatment in mice harboring either murine NOTCH1-induced primary leukemias or human T-ALL patient-derived xenografts (PDXs) led to potent antileukemic effects with a significant extension in survival without overlapping toxicities. Overall, our findings demonstrate a critical role for mitochondrial oxidative phosphorylation in T-ALL and uncover MB1-47-driven mitochondrial uncoupling as a novel therapeutic strategy for the treatment of this disease.


Assuntos
Antineoplásicos/uso terapêutico , Mitocôndrias/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Desacopladores/uso terapêutico , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Camundongos , Mitocôndrias/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Desacopladores/farmacologia
17.
Sci Rep ; 11(1): 8987, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33903681

RESUMO

The effects of respiratory inhibitors, quinone analogues and artificial substrates on the membrane-bound electron transport system of the fastidious ß-proteobacterium Eikenella corrodens grown under O2-limited conditions were studied. NADH respiration in isolated membrane particles were partially inhibited by rotenone, dicoumarol, quinacrine, flavone, and capsaicin. A similar response was obtained when succinate oxidation was performed in the presence of thenoyltrifluoroacetone and N,N'-dicyclohexylcarbodiimide. NADH respiration was resistant to site II inhibitors and cyanide, indicating that a percentage of the electrons transported can reach O2 without the bc1 complex. Succinate respiration was sensitive to myxothiazol, antimycin A and 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO). Juglone, plumbagin and menadione had higher reactivity with NADH dehydrogenase. The membrane particles showed the highest oxidase activities with ascorbate-TCHQ (tetrachlorohydroquinone), TCHQ alone, and NADH-TMPD (N,N,N',N'-tetramethyl-p-phenylenediamine), and minor activity levels with ascorbate-DCPIP (2,6-dichloro-phenolindophenol) and NADH-DCPIP. The substrates NADH-DCPIP, NADH-TMPD and TCHQ were electron donors to cyanide-sensitive cbb' cytochrome c oxidase. The presence of dissimilatory nitrate reductase in the aerobic respiratory system of E. corrodens ATCC 23834 was demonstrated by first time. Our results indicate that complexes I and II have resistance to their classic inhibitors, that the oxidation of NADH is stimulated by juglone, plumbagin and menadione, and that sensitivity to KCN is stimulated by the substrates TCHQ, NADH-DCPIP and NADH-TMPD.


Assuntos
Proteínas de Bactérias , Eikenella corrodens/enzimologia , Complexo I de Transporte de Elétrons , Consumo de Oxigênio/efeitos dos fármacos , Quinonas , Desacopladores , Aerobiose/efeitos dos fármacos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/metabolismo , NAD/metabolismo , Quinonas/química , Quinonas/farmacologia , Desacopladores/química , Desacopladores/farmacologia
18.
Mol Metab ; 51: 101222, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33781939

RESUMO

BACKGROUND: Mitochondrial uncouplers are well-known for their ability to treat a myriad of metabolic diseases, including obesity and fatty liver diseases. However, for many years now, mitochondrial uncouplers have also been evaluated in diverse models of cancer in vitro and in vivo. Furthermore, some mitochondrial uncouplers are now in clinical trials for cancer, although none have yet been approved for the treatment of cancer. SCOPE OF REVIEW: In this review we summarise published studies in which mitochondrial uncouplers have been investigated as an anti-cancer therapy in preclinical models. In many cases, mitochondrial uncouplers show strong anti-cancer effects both as single agents, and in combination therapies, and some are more toxic to cancer cells than normal cells. Furthermore, the mitochondrial uncoupling mechanism of action in cancer cells has been described in detail, with consistencies and inconsistencies between different structural classes of uncouplers. For example, many mitochondrial uncouplers decrease ATP levels and disrupt key metabolic signalling pathways such as AMPK/mTOR but have different effects on reactive oxygen species (ROS) production. Many of these effects oppose aberrant phenotypes common in cancer cells that ultimately result in cell death. We also highlight several gaps in knowledge that need to be addressed before we have a clear direction and strategy for applying mitochondrial uncouplers as anti-cancer agents. MAJOR CONCLUSIONS: There is a large body of evidence supporting the therapeutic use of mitochondrial uncouplers to treat cancer. However, the long-term safety of some uncouplers remains in question and it will be critical to identify which patients and cancer types would benefit most from these agents.


Assuntos
Mitocôndrias/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Desacopladores/uso terapêutico , Trifosfato de Adenosina/metabolismo , Animais , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Humanos , Mitocôndrias/metabolismo , Neoplasias/patologia , Fosforilação Oxidativa/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Desacopladores/farmacologia , Efeito Warburg em Oncologia/efeitos dos fármacos
19.
Toxicol Appl Pharmacol ; 414: 115426, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33524445

RESUMO

Activation of NLRP3 inflammasome is implicated in varieties of pathologies, the aim of the present study is to characterize the effect and mechanism of mitochondrial uncouplers on NLRP3 inflammasome activation by using three types of uncouplers, niclosamide, CCCP and BAM15. Niclosamide, CCCP and BAM15 inhibited LPS plus ATP-induced increases of NLRP3 protein and IL-1ß mRNA levels in RAW264.7 macrophages and THP-1 derived macrophages. Niclosamide, CCCP and BAM15 inhibited LPS plus ATP-induced increase of NFκB (P65) phosphorylation, and inhibited NFκB (P65) nuclear translocation in RAW264.7 macrophages. Niclosamide and BAM15 inhibited LPS-induced increase of IκBα phosphorylation in RAW264.7 macrophages, and the inhibitory effect was dependent on increased intracellular [Ca2+]i; however, CCCP showed no significant effect on IκBα phosphorylation in RAW264.7 macrophages stimulated with LPS. In conclusion, chemical mitochondrial uncouplers niclosamide, CCCP and BAM15 share common inhibitory effect on NLRP3 inflammasome activation through inhibiting NFκB nuclear translocation.


Assuntos
Inflamassomos/agonistas , Macrófagos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/agonistas , Desacopladores/toxicidade , Proteínas Quinases Ativadas por AMP/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Cálcio/metabolismo , Carbonil Cianeto m-Clorofenil Hidrazona/toxicidade , Citocinas/genética , Citocinas/metabolismo , Diaminas/toxicidade , Humanos , Inflamassomos/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Inibidor de NF-kappaB alfa/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Niclosamida/toxicidade , Oxidiazóis/toxicidade , Fosforilação , Pirazinas/toxicidade , Células RAW 264.7 , Células THP-1
20.
Exp Neurol ; 337: 113597, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33422552

RESUMO

The extent that age-dependent mitochondrial dysfunction drives neurodegeneration is not well understood. This study tested the hypothesis that mitochondria contribute to spinal cord injury (SCI)-induced neurodegeneration in an age-dependent manner by using 2,4-dinitrophenol (DNP) to uncouple electron transport, thereby increasing cellular respiration and reducing reactive oxygen species (ROS) production. We directly compared the effects of graded DNP doses in 4- and 14-month-old (MO) SCI-mice and found DNP to have increased efficacy in mitochondria isolated from 14-MO animals. In vivo, all DNP doses significantly exacerbated 4-MO SCI neurodegeneration coincident with worsened recovery. In contrast, low DNP doses (1.0-mg/kg/day) improved tissue sparing, reduced ROS-associated 3-nitrotyrosine (3-NT) accumulation, and improved anatomical and functional recovery in 14-MO SCI-mice. By directly comparing the effects of DNP between ages we demonstrate that mitochondrial contributions to neurodegeneration diverge with age after SCI. Collectively, our data indicate an essential role of mitochondria in age-associated neurodegeneration.


Assuntos
Envelhecimento , Mitocôndrias/metabolismo , Traumatismos da Medula Espinal/patologia , 2,4-Dinitrofenol/farmacologia , Animais , Sobrevivência Celular , Progressão da Doença , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Estresse Oxidativo , Consumo de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/complicações , Tirosina/análogos & derivados , Tirosina/metabolismo , Desacopladores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...